01. April 2015

Transglutaminases: current research and applications - future directions

by László Fésüs (University of Debrecen, Hungary)

Transglutaminase research - born from the observation of enzymatically catalyzed Ca2+-dependent incorporation of amines into proteins - has advanced steadily during the past decades leading to milestone discoveries such as the identification of the ε-(γ-glutamyl)-lysine cross-link, the description of the catalytic mechanism of clot stabilizing FXIIIa and the ubiquitous tissue transglutaminase (TG2) mediated by the Cys-His-Asp triad, the discovery of their strong binding to fibronectin, the identification of TG2 with a functioning G-protein, the finding and cloning of all members (TG1-7, FXIII-A and erythrocyte membrane protein band 4.2) of the mammalian transglutaminase family, the several crystal structures, which unveiled a conserved four domain architecture, and the knocking out of transglutaminase genes in mice.

Clinical discovery and translational research have been the prime driving forces in the transglutaminase field resulting in diagnostic, therapeutic and biotechnological applications. Bleeding in FXIII-A deficient patients can be controlled today with recombinant FXIII-A, while FXIII inhibitors may be soon introduced as anti-thrombotic agents. A large proportion of congenital ichthyosis patients were found to have TG1 deficiency pointing at its importance in the cornification process of the skin, where along with other transglutaminases it has specific substrates and tasks. TG1, 2, 3, and 5 are possible targets in dermatological disorders.

Activation and exposure of TG2 are the major pathologic factors in celiac disease. TG2 deamidates gliadin, which provokes an inflammatory immune response in susceptible HLA settings, and it is deposited in tissues leading to autoimmune reactions. TG2 specific celiac antibodies became the specific diagnostic marker of the disease. The epitopes they target have been described recently and this forecasts transglutaminase-based therapeutic approaches. Malfunctioning of various transglutaminases, particularly TG2 has been implicated in additional pathologies including cancer, kidney and liver fibrosis, cystic fibrosis, neurodegenerative disorders, cataract formation, cardiac failure, inflammatory and autoimmune disease. Basic cellular processes, such as cellular signaling, gene expression regulation, differentiation, mitochondrial function, autophagy and apoptosis seem to be altered. Newly available biochemical, gene-editing and imaging technologies hold promise for identifying substrates (cross-linked or modified by naturally occurring mono- and polyamines) and interacting partners. Targeting them will help pinpoint the exact role of transglutaminases and show the ways of intervention. Finally, cross-linked protein biopolymers can serve as glues in tissue engineering and make food more palatable highlighting that transglutaminases are good tools for regenerative medicine, food technology and chemical engineering.

There are still many challenging issues. The structure of the Ca2+-activated active enzymes (particularly in living cells and in complexes) is still unknown, similarly to the role of their intrinsically disordered regions in determining cellular localization and functions. Transglutaminases have isopeptidase activity, which may regularly cleave the cross-links in cells and tissues making the transglutaminase reaction reversible and a potential regulator of critical cellular processes. Although evidences point to important scaffolding function of TG2 and FXIII-A in the extracellular matrix, no obvious connective tissue phenotype is associated with their absence. Usually several transglutaminases are expressed in a given cell type and tissue raising the possibility of their redundant functions. All the above achievements and promising new directions clearly demonstrate that the transglutaminase field is in expansion - almost 500 of the so far published 8,000 papers appeared in 2014 - and has not reached its full potential in biomedical research and biotechnology.

The author:
László Fésüs
László Fésüs is professor of biochemistry and molecular biology at University of Debrecen, Faculty of Medicine, in Hungary and dedicates his research to transglutaminase since the late 1970s.


  • Zedira offers a huge portfolio of reliable specialist transglutaminase related products meant to catalyze research and development, both in academia and industry.


  • imageReversibly acting transglutaminase 2 inhibitors: drug candidates for the treatment of fibrosis
  • Zedira supports Gordon Research Conference
  • imagePress release: Zedira announces ISO 9001:2015 certification
  • imageZedira communication: Joint poster presentation on “Feasibility of a new automated FXIII activity assay”
  • imageArtikel in DZG Aktuell 01/2019 über die klinische Wirksamkeitsstudie unseres potentiellen Zöliakie Medikaments (deutsch)
  • imagePreview: Catalogue Editorial 2019
  • Press release: Dr. Falk Pharma and Zedira announce start of the phase 2a proof of concept study of ZED1227 for the treatment of celiac disease
  • Artikel in DLG-Lebensmittel – 06/2017 zur Bestimmung von Transglutaminase in Lebensmitteln (deutsch)
  • Zedira publication: Microbial Transglutaminase Used in Bread Preparation at Standard Bakery Concentrations Does Not Increase Immunodetectable Amounts of Deamidated Gliadin
  • Pressemitteilung: Dr. Falk Pharma und Zedira geben den Abschluss der Phase 1b-Studie für ZED1227 zur Zöliakie-Therapie bekannt und planen Start der Wirksamkeitsstudie
  • Press release: Dr. Falk Pharma and Zedira announce completion of phase 1b clinical trial of ZED1227 for the treatment of celiac disease and move on to proof of concept study
  • Press Release: Dr. Falk Pharma GmbH and Zedira enter a phase 1b clinical trial for a celiac disease drug
  • Zedira publication: Microbial transglutaminase has a lower deamidation preference than human tissue transglutaminase on a celiac disease relevant wheat gliadin T-cell epitope
  • Press release: Additional subsidy funding for clinical development of a celiac disease drug
  • Pressemitteilung: Zusätzliche Fördermittel für die klinische Entwicklung eines Zöliakie-Medikamentes
  • Press Release: Cooperation between Zedira and Cardiff University - Transglutaminase 6 is the focus of new research into ataxia
  • Press Release: Dr. Falk Pharma and Zedira enter phase I clinical trials for a celiac disease drug
  • Press release: Zedira receives further funding to develop Factor XIIIa-blockers for safe anticoagulation



  • 19th International Celiac Disease Symposium

    14.10.2021 - 17.10.2021
    Sorrento, Italy

  • Gordon Research Conference: Transglutaminases in Human Disease Processes

    12.06.2022 - 17.06.2022
    Mount Snow, USA